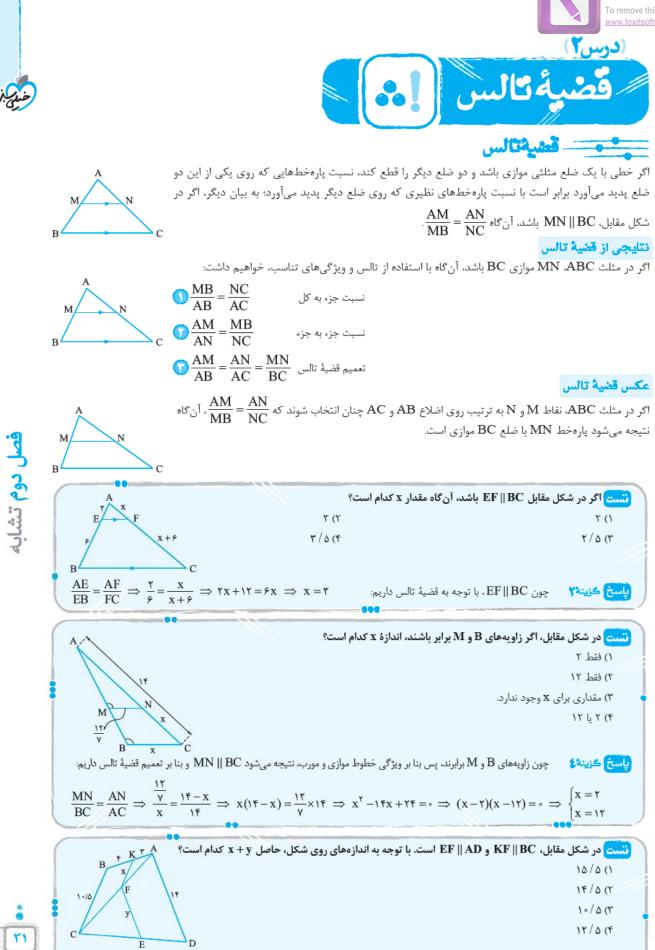
Edited with the trial version of Foxit Advanced PDF Editor To remove this notice, visit: www.foxitsoftware.com/shopping

ترسيم هاى هدسى واستدلال		
v	درس ۱: ترسیم هندسی	
1V	درس ۲: استدلال و انواع آن	

(فصل٢) يه ثالس، ثنينا به وڪار پردهاي آن 200 ۲۷ درس ۱: نسبت و تناسب ۳١ درس ۲: قضيه ٔ تالس درس ۳: تشابه شکلهای هندسی ۳۷ 44 درس ۴: نسبت اجزای فرعی در دو مثلث متشابه

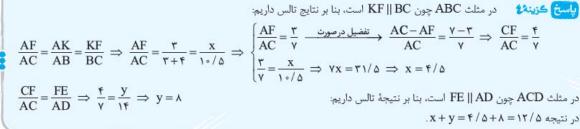
فصلع)	
	تحسم فطايى
V3	درس ۱: خط، نقطه و صفحه
٧۶	درس ۲: تفکر تجسمی
٧٩	درس ۳: برش و سطحمقطع برش
٨٢	درس ۴: دوران حول یک محور

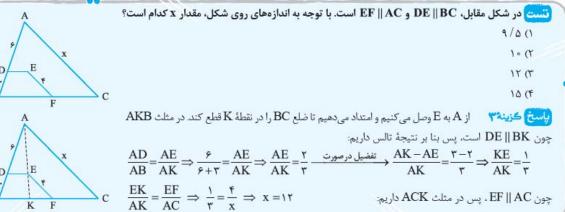

فصل٥	دايره
٨۵	درس ۱: مفاهیم اولیه، مماس، قاطع و زاویه در دایره
٩٧	درس ۲: روابط طولی در دایره
1.9	درس ۳: چند ضلعیهای محیطی و محاطی

(1, loo) <u>پلهاى ھەدسى وكارېردھا</u> 110 درس ۱: تبدیلهای هندسی 177 درس ۲: کابرد تبدیلات در حل مسائل هندسی

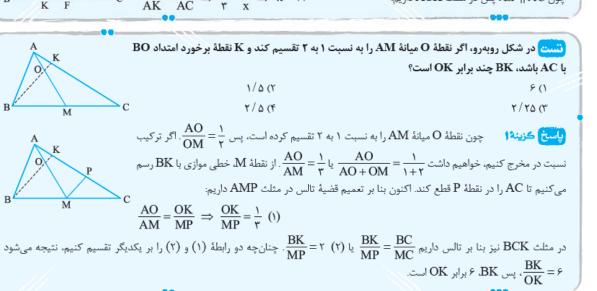
صل٧).	<u>(é</u>
	روابط طولى درمثلي
151	درس ۱: قضیهٔ سینوسها در مثلث
188	درس ۲: قضیهٔ کسینوسها در مثلث
177	درس ۳: ویژگی نیمساز زاویههای داخلی و طول نیمسازها
15.	درس ۴ قضیهٔ هرون

166	پاسخنامهٔ تشریحی
16.	پاسخنامهٔ کلیدی

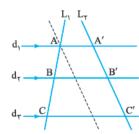



Edited with the trial version of Foxit Advanced PDF Editor To remove this notice, visit:

Edited with the trial version of Foxit Advanced PDF Editor To remove this notice, visit: www.foxitsoftware.com/shoppin

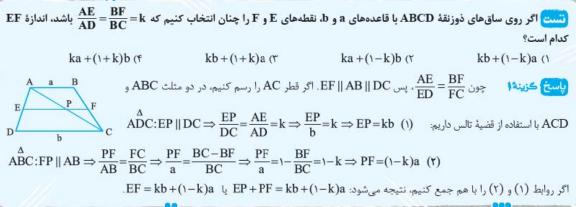


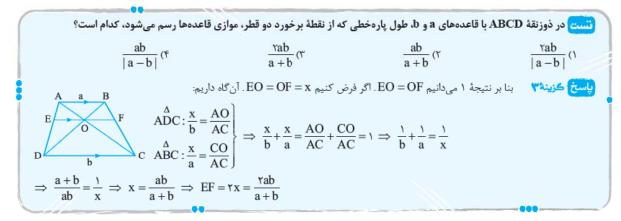
۳۲

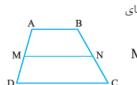


قضيهٔ تالس در حالت ڪليتر

قضیه اگر چند خط موازی، دو خط مورب را قطع کنند، پارهخطهای متناظر ایجادشده روی آن دو خط، با هم متناسباند؛ یعنی در شکل مقابل، داریم: AB A'B' AB A'B'


$$d_{\gamma} \parallel d_{\gamma} \parallel d_{\gamma} \implies \frac{AB}{BC} = \frac{A'B'}{B'C'} \quad \downarrow \quad \frac{AB}{AC} = \frac{A'B'}{A'C'}$$

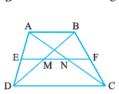


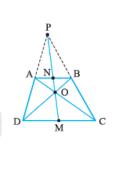


چند نتيجة مهم از قضية تالس در ذوزنقه

نتیجهٔ ۱، در هر ذوزنقه، پارهخطی که از محل برخورد دو قطر به موازات قاعدههای آن رسم شده و به دو ساق محدود باشد، در نقطهٔ برخورد دو قطر، نصف میشود؛ یعنی در شکل مقابل داریم EO = OF.

نتیجهٔ ۲۱۰در هر ذوزنقه، اگر خطی به موازات دو قاعدهٔ آن رسم شود تا ساقها و قطرها را قطع کند، پارهخطهای محدود به ساقها و قطرها با هم برابرند؛ یعنی در شکل مقابل با فرض EF || AB || CD داریم EL = KF یا EK = FL.




نتیجهٔ ۳، در هر ذوزنقه، پارهخطی که وسطهای دو ساق را به هم وصل میکند (میانخط در ذوزنقه)، موازی قاعدههای ذوزنقه و برابر میانگین دو قاعده است؛ یعنی در ذوزنقهٔ شکل مقابل، اگر M و N وسطهای دو ساق باشند، داریم: MN = $\frac{AB + CD}{\gamma}$ و MN || AB

نتیجهٔ ۴، در هر ذوزنقه، وسطهای دو ساق و وسطهای دو قطر آن بر یک راستا قرار دارند و طول پارهخطی که وسطهای دو قطر را به هم وصل میکند، نصف قدرمطلق تفاضل دو قاعدهٔ ذوزنقه است؛ یعنی در شکل مقابل با فرض آنکه نقاط E و F وسطهای دو ساق و نقاط M و N وسطهای دو قطر باشند، آنگاه این چهار نقطه بر یک راستا

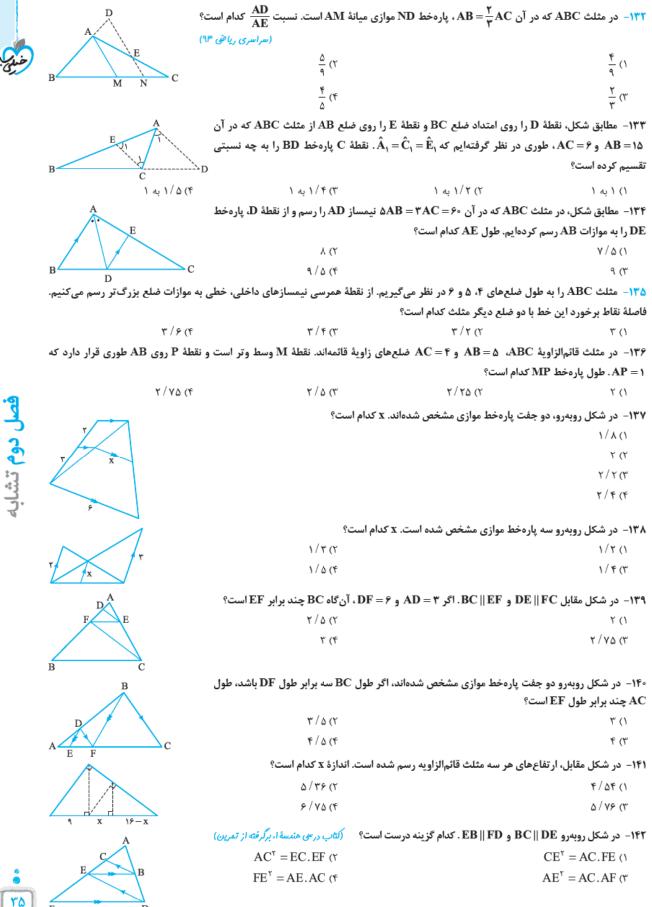
هستند و در ضمن MN =
$$\frac{DC - AB}{\gamma}$$
 .

نتیجهٔ ۵، در هر ذوزنقه، دو نقطهٔ وسط قاعدهها، نقطهٔ برخورد دو قطر و نقطهٔ برخورد امتداد دو ساق آن، بر یک راستا قرار دارند؛ یعنی در شکل مقابل، اگر N و M وسطهای دو قاعدهٔ ذوزنقه باشند، آنگاه نقاط O ،N ،P و M بر یک راستا هستند.

٣٣

<mark>فصل دوم</mark> تشاب

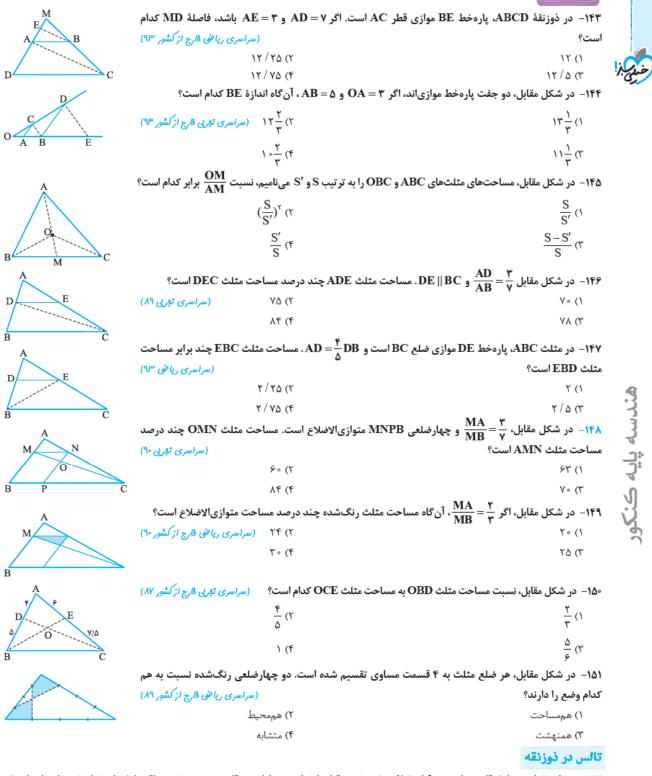
۴ (۱


٣۴

Edited with the trial version of Foxit Advanced PDF Editor To remove this notice, visit: www.fokitsoftware.com/shopping

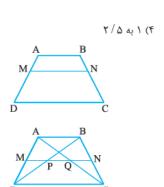
و پرسشهای چهارگزینه ای _____

۵ (۳



۲

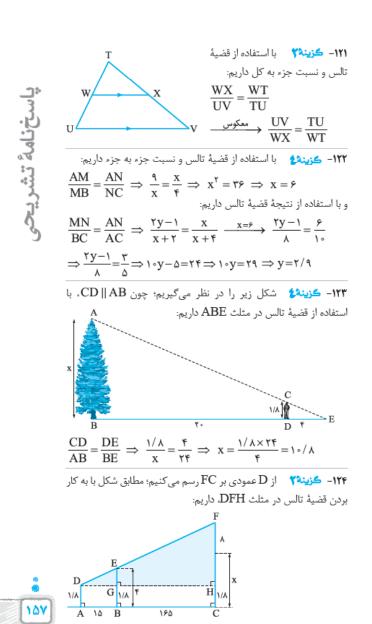
38


۱۵۲− در ذوزنقهای به طول قاعدههای a و b، از نقطهٔ محل برخورد قطرها خطی به موازات دو قاعده رسم می کنیم. اگر طول پارهخطی که ساقهای ذوزنقه از این خط جدا می کنند x باشد، آن گاه کدام گزینه درست است؟

$$\frac{\gamma}{x} = \frac{1}{a} + \frac{1}{b} (\gamma \qquad \qquad \frac{1}{x} = \frac{1}{a} + \frac{1}{b} (\gamma \qquad \qquad x = \sqrt{ab} (\gamma \qquad \qquad x = \frac{a+b}{\gamma} (\gamma \qquad \qquad x =$$

 A
 9
 PQ
 PQ
 P
 CD = 17
 AB = 9 B = 7 B = 7 PC = 7</

۱۵۴– در ذوزنقهای به طول قاعدههای ۴ و ۱۳ واحد میخواهیم روی هر ساق یک نقطه انتخاب کنیم که با وصل کردن این دو نقطه، پارهخطی به طول ۱۰



خدي ا

Edited with the trial version of Foxit Advanced PDF Editor To remove this notice, visit:

يريز!

Edited with the trial version of Foxit Advanced PDF Editor To remove this notice, visit: www.foxitsoftware.com/shopping

$$\begin{split} & AP = AR = e^{AA} = l : [i : dicy = b^{A} = AB = e^{A} = l : tie delt delt delt delt i : tieses so delto = 18 = l : delt delt delt delto = 18 = b^{A} = \frac{1}{AB} = \frac{1}{AB} = \frac{1}{A} = \frac{1}{A}$$

Foxit Advanced PDF Editor To remove this notice, visit: www.foxitsoftware.com/shopping

پس با استفاده از قضیهٔ تالس، داریم: $\frac{DE}{AB} = \frac{CE}{AC} \implies \frac{x}{1 \Upsilon} = \frac{\Upsilon \circ - x}{\Upsilon \circ } \implies \Upsilon \circ x = \Upsilon \circ x = \Upsilon \circ \chi - 1 \Upsilon x$

$$\frac{BF}{BC} = \frac{x}{r} \quad (**) \qquad BCD d(x), BCD d(x), f(x) = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} \quad (**) = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} \quad (**) = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} \quad (**) = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2}$$

۱۵۹

 $\frac{CD}{BD} = \frac{CE}{EA}$ (#)

از مقایسهٔ (*) و (**) داریم:

با به کار بردن قضیهٔ تالس در مثلث ACD، داریم: (۲۲ (۲۳ ایم) (۲۳)

 $\frac{CD}{BD} = \frac{CF}{FD} \implies \frac{(1\beta - x) + x}{9} = \frac{1\beta - x}{x} \implies \frac{1\beta}{9} = \frac{1\beta - x}{x}$

 $\Rightarrow 18x = 9 \times 18 - 9x \Rightarrow 7\Delta x = 9 \times 18 \Rightarrow x = \frac{9 \times 18}{7\Delta}$

 $\Rightarrow x = \frac{9 \times 19}{7\Delta} \times \frac{9}{6} = \frac{9 \times 19 \times 9}{100} = \frac{100}{100} = \frac{1$

j,

یس دو مثلث PIB و QIC متساوی الساقین هستند، فرض می کنیم P = X I Y Q X I Y Q Q = QI = y PB = PI = x P = Y PB = PI = x P = Y PB = PI = x P = Y PB = PI = xABC، داريم: $\left[\frac{BP}{AB} = \frac{CQ}{AC} \implies \frac{x}{r} = \frac{y}{A}\right]$ $\left| \frac{PQ}{BC} = \frac{AP}{AB} \right| \Rightarrow \frac{x+y}{s} = \frac{s-x}{s}$ $\Rightarrow \begin{cases} \Delta x = fy \\ f(x+y) = f(f-x) \end{cases} \xrightarrow{-d_{L} \times f(x+y)} \begin{cases} x = 1/\beta \\ y = f(x+y) \end{cases}$ \Rightarrow PQ = x + y = $\mathfrak{r} / \mathfrak{s}$ ۱۳۶- کزینه ۳۷ از نقطهٔ M، عمود MH را بر AB وارد می کنیم. از آن جا كه M وسط BC است و MH || AC ، با استفاده از قضيهٔ تالس نتيجه می گیریم H هم وسط AB است، پس A/a = T/a و در نتیجه H می گیریم H

 \Rightarrow $\forall YX = Y \circ \times YY \Rightarrow X = \frac{Y \circ \times YY}{\pi Y} = \frac{Y\Delta}{Y} = Y/\Delta$

۱۳۵- گزینها با توجه به شکل، از آنجا که I نقطهٔ همرسی نیمسازهای داخلی است، اگر از آن به B و C وصل کنیم، زاویههای B و C نصف می شوند. از $Q\hat{I}C = \frac{\hat{C}}{\gamma}$ و $B\hat{I}P = \frac{\hat{B}}{\gamma}$ و مورب، داریم $\hat{R} = B\hat{I}P$ و \hat{R}

 $HP = BP - BH = 1/\Delta$ از طرفی یارەخط MH، وسطھای دو ضلع مثلث ABC را به هم وصل كرده، يس طول آن نصف طول ضلع سوم است؛ يعنى $MH = \frac{AC}{V} = Y$ در مثلث قائمالزاویهٔ MHP و $\frac{r}{r} = MHP$ و $HP = \frac{r}{r}$ ضلعهای زاویهٔ قائمه . MP = $\frac{\Delta}{r}$ = ۲/۵ میشود MP = $\frac{\Delta}{r}$ = ۲/۵ . EF||AB .DAB در مثلث (AB .DAB یس با استفاده از قضیهٔ تالس داریم: ^G $\frac{\mathrm{DF}}{\mathrm{FB}} = \frac{\mathrm{DE}}{\mathrm{EA}} = \frac{\mathrm{r}}{\mathrm{r}} \Longrightarrow \frac{\mathrm{FB}}{\mathrm{DF}} = \frac{\mathrm{r}}{\mathrm{r}} (*)$ در مثلث FG || CD ،BCD پس با استفاده ح از قضبهٔ تالس داریم: $\frac{FG}{CD} = \frac{BF}{BD} \xrightarrow{(*)} \frac{FG}{CD} = \frac{r}{r+r} \Rightarrow \frac{x}{\rho} = \frac{r}{\Delta} \Rightarrow x = r/r$ ۸۸– گزینهٔ استفاده از قضیهٔ تالس D در مثلث ABC، داریم: $\frac{FC}{BC} = \frac{x}{r} \quad (*)$

Edited with the trial version of Foxit Advanced PDF Editor To remove this notice, visit: www.foxitsoftware.com/shopping

از طرفی $DB = \frac{4}{6}DB$ ، به عبارت دیگر $\frac{4}{6} = \frac{4}{2}$ ، پس در نظر میگیریم				
AD = ۴x و DB = ۵x و DB = ۴x، از آنجا که DE BC ، از قضیهٔ تالس در مثلث				
$\frac{DE}{BC} = \frac{AD}{AB} \Longrightarrow \frac{DE}{BC} = \frac{f_X}{q_X} \Longrightarrow \frac{BC}{DE} = \frac{q}{f} \qquad \text{ABC} ABC$				
$\xrightarrow{(\bullet)} \frac{S_{\Delta}}{S_{\Delta}} = \frac{9}{r} = r/r\Delta$ $\xrightarrow{(\bullet)} EBD$				
۱۴۸ – گزینهٔ۳ – MA (BC و MN BC ، پس با توجه به قضیهٔ تالس				
$\begin{cases} AN = y \\ NC = y \end{cases} \begin{cases} MA = x \\ MB = y \end{cases} $				
از طرفی داریم: ۲x N Vy N Vy S A L ON				
$B_{h}^{V_{X}} \xrightarrow{O} C_{h}^{V_{Y}} \xrightarrow{S_{\Delta}} \frac{1}{\gamma} \xrightarrow{h.ON} \frac{1}{\gamma} \xrightarrow{h.AM} = \frac{ON}{AM} (*)$				
در مثلث CAM، داریم ON AM، پس:				
$\frac{ON}{AM} = \frac{CN}{AC} \implies \frac{ON}{AM} = \frac{\forall y}{\gamma \circ y} = \frac{\forall \gamma}{\gamma \circ y} = \frac{\forall \gamma}{\gamma \circ y} = \frac{\forall \gamma}{\gamma \circ y}$				
$\xrightarrow{(*)} \frac{S_{\Delta}}{S_{\Delta}} = \% \circ$				
$MA = \frac{r}{r}$ از آنجاکه r از $MB = r$ از آنجاکه r از $MA = rx$ از آنجاکه rx از $MB = rx$ از $MB = rx$ از آنجا که $MS = rx$ از آنجا که R ($MS = rx$ از آنجا که $MS = rx$ ($MS = rx$ ($MS = rx$ ($MS = rx$)) ($MS = rx$ ($MS = rx$) ($MS = rx$ ($MS = rx$) ($MS = rx$ ($MS = rx$) ($MS = rx$) ($S = rx$ ($MS = rx$) ($S = rx$) ($MS = rx$) ($S = rx$) (
$\Rightarrow \frac{S_{\Delta}}{S_{MNPB}} = \frac{ON}{\epsilon_{X}} (*)$				
حالا اگر بتوانیم ON را برحسب x به دست آوریم، از تساوی (≭) جواب سوال به دست میآید. مثلث AMC را ببینید، از موازیبودن ON و AM				
$\frac{ON}{AM} = \frac{CN}{AC} \implies \frac{ON}{\gamma_X} = \frac{\gamma_Y}{\Delta y} \implies ON = \frac{\gamma_X}{\Delta}$				
$\xrightarrow{(\bullet)} \frac{S_{\Delta}}{S_{MNPB}} = \frac{\frac{\beta x}{\Delta}}{\beta x} = \frac{1}{\Delta} = \frac{1}{2}$				
ال (زیرا $\frac{8}{\Delta} = \frac{8}{10}$ (زیرا $\frac{8}{\Delta} = \frac{8}{10}$ (زیرا $\frac{8}{\Delta} = \frac{8}{2}$). (زیرا $\frac{8}{\Delta} = \frac{8}{2}$). پس طبق عکس قضیهٔ تالس DE با BC موازی است. حالا می توان نتیجه گرفت:				
$\begin{array}{c} A \\ D \\ B \\ B \\ C \end{array} = S_{\begin{array}{c} \Delta \\ C \\$				

	Fo remove this notice, visit: www.foxitsoftware.com/shop
$ \begin{array}{c} \stackrel{\Delta}{\operatorname{ADE}} : \operatorname{CB} \parallel \operatorname{DE} & \xrightarrow{\operatorname{JLu}} & \stackrel{AC}{\operatorname{AE}} = \frac{\operatorname{AB}}{\operatorname{AD}} \\ \stackrel{\Delta}{\operatorname{AFD}} : \operatorname{EB} \parallel \operatorname{FD} & \xrightarrow{\operatorname{JLu}} & \stackrel{\operatorname{AE}}{\operatorname{AF}} = \frac{\operatorname{AB}}{\operatorname{AD}} \end{array} \right\} \Rightarrow \begin{array}{c} \stackrel{AC}{\operatorname{AE}} = \frac{\operatorname{AE}}{\operatorname{AF}} \\ \Rightarrow \begin{array}{c} \stackrel{AC}{\operatorname{AE}} = \frac{\operatorname{AE}}{\operatorname{AF}} \end{array} $	المعلية
$\Rightarrow AE^{r} = AC.AF$	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ME = x c, idit, co, bit, co, co, co, co, co, co, co, co, co, co	
A و ABC و ABC و ABC قاعدهٔ B مشترک است، ارتفاعهای OBC، قاعدهٔ B مشترک است، ارتفاعهای و ارد بر BC مشترک است، ارتفاعهای وارد بر B را در این دو مثلث رسم میکنیم. H M M مشترک است، برابر با H M A A A A A A A A A A A A A A A A A A	هندسه پايه کز
$\begin{split} \frac{S}{OBC} &\stackrel{\Lambda}{\to} \frac{OH'}{AH} \Longrightarrow \frac{S'}{S} = \frac{OH'}{AH} (\texttt{m}) \\ \stackrel{\Lambda BC}{\to} &\stackrel{\Lambda BC}{\to} \\ \text{if def } H \stackrel{\Lambda H}{\to} \frac{OH'}{AHM} \text{slow} \text{if } H \stackrel{\Lambda H}{\to} \frac{OM}{AM} = \frac{S'}{S} \end{split}$	كور
$AD = \frac{m}{Vx}$ ، پس از $AD = \frac{m}{Vx}$ ، پس از $AD = \frac{m}{Vx}$ ، پس از $AE = \frac{m}{Vx}$ ، پس از $AE = \frac{m}{Vx}$, $BC = \frac{m}{V}$ AC = Vy, $AE = my$, $AC = VyAC = Vy$, $AE = my$, $AC = VyAC = Fy$. AC = Fy. AC = Fy.	
$\frac{S}{\frac{ADE}{DEC}} = \frac{\frac{1}{\gamma}h.\gamma y}{\frac{1}{\gamma}h.\gamma y} = \frac{\gamma}{\gamma} = \frac{\gamma}{\gamma} \Delta$	
الجند المجلم المحلم ا	19+

۱۵۱- گزینهٔ۱ با توجه به شکل پس طبق، $\frac{AD}{BD} = \frac{AE}{CE} = \pi$

عكس قضية تالس DE || BC و

$$\begin{split} S_{\substack{\Delta\\ CEF}} &= S_{\substack{\Delta\\ BDG}} = \frac{1}{\gamma}h \times \tau_Z \end{split}$$

داريم:

OE = OF ميدانيم OE = OF.

اگر از دو طرف تساوی $\Delta_{\Delta} = S_{\Delta}$ مقدار Δ_{Δ} را کم کنیم، داریم: ODE BDE CDE

-حالا اگر از دو طرف تساوی $\begin{array}{ccc} \Delta & S & \Delta \\ FGH & CEF & BDG \end{array}$ را کم کنیم، داریم:

 $S_{\substack{\Delta\\OBD}} = S_{\substack{\Delta\\OCE}}$

 $S_{CEHG} = S_{BDHF}$

۱۵۵− ڪزينه∀ وقتی دوتا سؤال پشت سر هم از فرمول MN = kb + (۱- k)a استفاده می کند؛ یعنی دیگر باید آن هایی هم که حافظهٔ خوبی ندارند، فرمول را حفظ کنند! $MN = \frac{1}{\pi} \times \mathfrak{s} + \frac{\mathfrak{r}}{\pi} \times \mathfrak{r} = \mathfrak{r} \qquad \text{in } k = \frac{1}{\pi} \mathfrak{s} = \mathfrak{s} \cdot \mathfrak{s} = \mathfrak{r}$ **۱۵۶- گزیندی** همانطور که در درسنامه حالا اگر در نظر بگیریم $CD = \pi AB$ و در نتیجه: $CD = \pi AB$ $PQ = \frac{CD - \frac{CD}{r}}{r} = \frac{\frac{rCD}{r}}{r} = \frac{CD}{r}$

باسخانامة تشريحي

181

پس طول هر کدام میشود $\frac{\mathbf{x}}{\mathbf{y}}$. $\begin{array}{c} A D C : \frac{EO}{DC} = \frac{AO}{AC} \\ A B C : \frac{OF}{AB} = \frac{OC}{AC} \end{array} \end{array} \xrightarrow{+} \begin{array}{c} EO \\ DC + \frac{OF}{AB} = \frac{AO}{AC} + \frac{OC}{AC} \end{array}$ $\Rightarrow \frac{\frac{x}{r}}{\frac{r}{h}} + \frac{\frac{x}{r}}{\frac{r}{a}} = 1 \xrightarrow{\times \frac{r}{x}} \frac{1}{h} + \frac{1}{a} = \frac{r}{x}$ ۱۵۳ - گزینه اگر حافظهٔ خوبی داشته باشید، در درس نامه ثابت کردیم طول PQ میشود kb + (۱– k) که در این سؤال a = ۹ ، b = ۱۲ و $PQ = \frac{1}{w} \times 17 + (1 - \frac{1}{w}) \times 9 = 1 \circ$ <u>k = ۱</u>، پس: ر اگر هم فرمول یادتان نیست که شروع کنیم: B از A. پارمخط AE را موازی BC می کشیم. داریم: Q $\frac{AP}{PD} = \frac{1}{r} \Rightarrow \frac{AP}{AD} = \frac{1}{r+1} = \frac{1}{r}$ $\xrightarrow{AD}{AD} \xrightarrow{AP}{AD} = \frac{x}{r} \implies \frac{1}{r} \Rightarrow x = 1$ \Rightarrow PQ = $9 + x = 9 + 1 = 1 \circ$ ۱۵۴- کزینه ۲ راماول یادمان باشد،

 A
 F
 B
 اشد،

 P
 F
 F
 Q

 کلید حل مسائل تالس در ذوزنقه، رسم خط
 P
 F

 N
 P
 F
 Q

 O
 F
 E
 IN
 F
 P

 O
 F
 E
 IN
 F
 P
 F
 P

 O
 F
 E
 IN
 F
 C
 In
 In</ مطابق شکل پارمخط BE را موازی AD رسم میکنیم، در مثلث BEC با $\frac{FQ}{EC} = \frac{BQ}{BC} \Rightarrow \frac{FQ}{EC - FQ} = \frac{BQ}{BC - BO}$ $\Rightarrow \frac{\varphi}{q-\varphi} = \frac{BQ}{OC} \Rightarrow \frac{BQ}{OC} = \frac{\varphi}{r} = \frac{r}{r} \Rightarrow \frac{QC}{BO} = \frac{r}{r}$ راهدر) (مخصوص أنها كه حافظهٔ خوبی دارند!) اگر BQ = k، آنگاه $PQ = k.CD + (1-k)AB \implies 1 \circ = 1\%k + \%(1-k)$ \Rightarrow $1 \circ = 9k + F \Rightarrow k = \frac{9}{a} = \frac{7}{w}$ $\frac{BQ}{BC} = \frac{r}{r} \implies \frac{BQ}{BC - BO} = \frac{r}{r - r} \implies \frac{BQ}{CQ} = \frac{r}{r}$